top of page

PRINTED
RUNNING PERFORMANCE

A study of additive design as
a bridge between current standards and
a breakthrough in marathon performance.

A NEW WAVE
OF CREATION

The structural innovation of foam midsoles has reached a plateau due to the lack of internal controllability inherent in traditional injection molding.

The capacity for advancement is dependent on
greater fluidity in construction.

The start of this project had aligned with the inception of the footwear industry's exploration of 3D-printed structures.

With additive manufacturing, the midsole can now be framed as a void to be filled with linkages of highly-variable structures. 

Greater energy return heightens running efficiency
and reduces overall muscular force per stride. 

Lattice anatomy is highly controllable and can be
tuned to exhibit varying mechanical behaviors.

Using energy return as the main performance parameter,
can additive structures outcompete conventional foam?

FUTURE
OUTLOOK

The best performing lattice prototype displayed an energy return ~6% less than the Nike ZoomX running midsole within the same testing constraints.

Further structural explorations lie in translating

the sample arrangements to a full midsole model
while preserving the same mechanical behavior and remaining lightweight. 

CREDITS

HARDWARE

Form 2 - FormLabs
Servohydraulic System - Instron

SOFTWARE

nTopology
Adobe Suite

MATERIAL

Elastic Resin - FormLabs

bottom of page